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The interaction energy between a helium atom and a hydrogen molecule has been calculated from first 
principles using a simple wave function made up of 15 orbitals centered on the three nuclei. All molecular 
integrals encountered were accurately calculated using an IBM 709 digital computer. If r represents the 
distance measured along a line drawn from the helium nucleus to the midpoint of the hydrogen molecule 
bond, and if y is the angle between this line and the axis of the hydrogen molecule, then the interaction energy 
was computed at 15° increments of y from r = 3.8 to 5.2 a.u. With the H2 bond length held constant at 1.406 
a.u. it was found possible to represent the computed interaction energy quite accurately by the function 
Gr« r[l+SP2(cosY)], where P2(x) is a Legendre polynomial, C= 17.283 double Ry, /c = 2.027 (a.u.)-1, and 
5 = 0.375. The spherical average of the computed interaction energy agrees quite closely with an interaction 
energy obtained from gas diffusion measurements. It is shown that it is impossible to represent the calculated 
interaction energy by means of a dumbbell-type function, i.e., a function of the form f(pac)-\-f(pbc), where 
fix) is some suitable chosen function and pac and pbC represent the distance from the helium nucleus to the 
two hydrogen nuclei, respectively. Results are also presented for a slightly elongated H2 bond length of 
1.486 a.u. 

I. INTRODUCTION 

TH E interaction energy between two species X and 
Y is denned as the energy of the composite system 

X—Y minus the energy of the two when they are in­
finitely separated from one another. Such interaction 
energies are invaluable in interpreting kinetic theory 
and atomic and molecular scattering experiments as 
well as in formulating theories of inelastic processes and 
chemical reaction rates. The interaction energy between 
H and H2, and H 2 and H2 has been investigated previ­
ously.1,2 In these calculations however, it was found 
necessary to approximate the three- and four-center 
molecular integrals encountered in the formalism. The 
purpose of this research is to obtain the interaction 
energy between a helium atom and a hydrogen molecule 
using no molecular integral approximations. The inter­
action energy is computed at a sufficient number of 
points so that the form of its angular dependence is ap­
parent. To accomplish this we use a simple wave func­
tion made up of IS orbitals centered on the hydrogen 
and helium nuclei. This represents a direct extension of 
the method used by Heitler and London3 in their well-
known work on the energy of the hydrogen molecule. 
We also investigate the question, can the hydrogen 
molecule be treated as a dumbbell in its interaction with 
a helium atom or any other atom, i.e., can the interaction 
energy be expressed as an interaction between the 
helium atom and the two ends of the hydrogen molecule. 
After the true interaction energy has been calculated 
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one may see whether or not such a relationship is 
satisfied. 

II. ENERGY OF THE HE-H2 SYSTEM 

The geometry of the helium and hydrogen nuclei is 
shown in Fig. 1. We treat the problem in the Born-
Oppenheimer approximation, calculating the energy of 
the system for various fixed positions of the three nuclei. 
The four electrons are numbered 1 to 4 and the distance 
of the ith electron from the three nuclei is denoted by 
ria, rib, and riC) respectively. The distance between the 
ith and jth electron is called r^. With this notation, the 
Hamiltonian in double Rydbergs for the He-H2 system 
can be written as 

H=Z \-W 
1 

rib 

1 1 2 2 

+ E — + — + — + — 
pairstf Yij pai pac pbe 

(2.1) 

All distances are in a.u. (Bohr radii). If we define one-
and two-electron operators 

fi=-iVi2-l/ria~l/rib-2/ric, (2.2) 

gij= U*ih (2.3) 

then the Hamiltonian can be rewritten as 

i=l pairs ij 

1 2 2 
;+ — + — + —. (2.4) 

Pab Pac Pbc 

The notation may be made even more compact by 
defining total one- and total two-electron operators 

F=JLh 

G= E 

(2.2a) 

(2.3a) 
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whence, 
H=F+G+l/Pab+2/pac+2/Pbc (2.4a) 

We define IS orbitals a and b centered on the hydrogen 
nuclei as follows: 

a(i) = (a 8 /*) 1 ' 2*-"*, b(i)= (oV*)1 '2*-"* (2.5) 

A 15 orbital centered on the helium nucleus is called c 
and is defined by 

c(i)=03lA)1^«r^-. (2.6) 

We denote the two possible electron spin assignments in 
these orbitals by the superscripts + and —, respectively. 
Thus, from the three spacial orbitals a, b, and c, six spin 
orbitals a+, ar, b+, b~, c+, and c~ may be formed. From 
these spin orbitals we form two four-electron determi-
nantal functions as follows 

^ = ( 4 | ) - i / 2 

5- (4 ! ) - 1 / 2 

a+(l) 
b-(X) 
c+(l) 
c~(l) 

fl-(l) 
b+W 
c+(l) 
c~(l) 

a+(2) 
b~(2) 
c+{2) 
c~(2) 

o-(2) 
b+(2) 
c+(2) 
c~(2) 

a+(3) 
b~(3) 
c+(S) 
c~(3) 

fl"(3) 
b+(3) 
c+(3) 
c-(3) 

a+(4) 
6-(4) 
C+(4) 
c-(4) 

ar(4) 
b+(i) 
C+(4) 
C-(4) 

(2.7) 

(2.8) 

In an extension of the Heitler-London method, we take 
the wave function for the He-H2 system to be 

y=(2)~w(A-B). (2.9) 

The wave function of Eq. (2.9) is not normalized. To 
normalize it, we let 

S2-- •- / dr ^ * * 

= - Idr(A*A+B*B-A*B-B*A), (2.10) 

where dr denotes integration over the spacial coordinates 
and summation over the spin coordinates of all four 
electrons. I t is easy to show that a normalized wave 
function is obtained by dividing the right side of Eq. 
(2.9) by S. I t is easily shown that 

2 = [dTA*A- J drA*B, 

= SA 

The energy of the He-H2 system is obtained by 
evaluating the expression 

E=S~2 dry*HV, 

E= (SAA-SAB)-^ fdrA*FA+ f 

(2.H) 

drA*GA 

- [dTA*FB- UTA^GB] 

+ l/pab+2/pac+2/Pbc. (2.12) 

Equation (2.12) represents a complete formal solution 
for the energy of the He-H2 system given the wave 
function of Eq. (2.9). However, in order to use this ex­
pression for actual calculations it is most convenient to 
express the integrals in Eq. (2.12) in terms of integrals 
over the orbitals a, b, and c. To do this we make use of 
the formalism developed by Lowdin for evaluating 
matrix components of operators between determinantal 
wave functions made up of nonorthogonal orbitals.4,5 

The procedures are straightforward but tedious and 
exacting. To express the final results we define the 
following basic integrals. Here Ui(l), Uj(l), etc., stand 
for any one-electron orbitals, i.e., a ( l ) , Z>(1), etc. 

Overlap integrals: 

• / • 

dvi Ui(\)uj{\), (2.13) 

where dv\ denotes integration over the spacial coordi­
nates of electron 1. 

One-electron integrals: 

U\H= \dv1ui{\)fiUj{\), 

Two-electron integrals: 

(2.14) 

P i | */]==/ / dvidv2 ^(1K(1>—u k{2)ui{2). (2.15) 
J J rn 

(2.10a) Using the above integrals, we find that 

(2.16) 

(2.17) 

-2sala\c-l{l-sh?)-2shc[b\c]{l-sac% (2.18) 
* P. O. Lowdin, Phys. Rev. 97, 1474, 1490 (19SS). 
6 J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill Book Company, Inc., New York, 1963), Vol. I, Appendix 9, p. 285. 

/ 

SAA= ( 1 — Sac
2)(l — Sbc

2), 

SAB= — (Sab — SacSbc)2, 

drA^FA^la\a2(l-Sbc2)+Lb\b2(l-saJ
i)+lc\c2(2-Sbc2-sa

2) 
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/dTil*FjB=2(jflb-Jaoy6c){jaOk] + J6c[fl|c]-Ja6[c|c]-CalO^ i2^) 

\drA*GA = [aa\bb^+[aa\cc^(2-su2)+lbb\^^^ 

+^sacSbc[ca\ cb~]—2sac[cc\ ca]+[ac\ ac~](sh?— \)+[bc\ bc]{sa
2— l)^2shc[cc\cb~], (2.20) 

/ drA*GB=— [ab\ab2+2sbc[ab\ac]+2sae[ba\bc]+2(sab--2$oc$6c)[ca|c6]+2($ocs6c—2sa6)[ec|a&] 

—Sbc2£ac\ ac\—sac
2[bc\ bc~\-\-2s ahs bc[cc \ ca~]+2s abS ac[cc \ cb~}—sab

2[.cc\ cc], (2.21) 

The energy E of the He-H2 system may now be ex­
pressed in terms of the basic integrals by substituting 
Eqs. (2.16) through (2.21) into Eq. (2.12). 

III. INTERACTION ENERGY 

The expression (2.12) allows us to compute the energy 
of the He-H2 system once the values of pa&, pac, Pbc,«, 
and P are given. The quantities p«&, pac, and pbc deter­
mine the geometry of the three nuclei (Fig. 1) while a 
and /3 are the screening constants of the 15 orbitals 
defined in Eqs. (2.5) and (2.6). We can see how to pick 

A careful analysis shows that Eq. (3.1a) is identical to 
the expression for the energy of the hydrogen molecule 
as obtained by Heitler and London3 or Wang6 using the 
wave function a(l)b(2)+a(2)b(l). Equation (3.1b) 
represents the energy of a helium atom computed with 
a one determinant wave function made up from the 
spin orbitals c+ and c~. Such a wave function has the 
simple spacial dependence c(l)c(2). Thus, in the limit of 
infinite separation the energy of the system, provided 
that we pick the correct values for the screening con­
stants a and /?, approaches the lowest energy which one 
can obtain for an isolated helium atom and an isolated 
hydrogen molecule given only the IS orbitals a, b, and c. 
The correct value of a can be obtained from the calcula­
tion of Wang6 who did the Heitler-London calculation 
varying the value of a to obtain the minimum energy. 
He calculates this minimum energy to be —1.139 double 
Ry with a = 1.166 (a.u.)"-1 and the hydrogen bond length 
equal to 1.406 a.u. This is to be compared with an ex­
perimental energy of —1.173 at a bond length of 1.401. 
The problem of rinding the value of /5 which minimizes 
the energy of the isolated helium atom is a trivial one7 

6 S. C. Wang, Phys. Rev. 31, 579 (1928). 
7 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-

Hill Book Company, Inc., New York, 1960), Vol. II, p. 36. 

the values for a and fi as well as how to obtain the 
interaction energy from the energy of the composite 
system by examining the expression (2.12) in the limit 
of infinite separation between the helium atom and the 
hydrogen molecule. In this limit, the overlaps sac and 
Sbc are zero as are all two-electron integrals containing 
the orbital c and either a or b. In the limit r —> oo, the 
energy of the system becomes 

Er->00=E1+E2, (3.1) 

where 

and the correct value of 0= 27/16= 1.6875 (a.u.)"1 gives 
an energy of —2.84766 double Ry as compared with an 
experimental energy of —2.90372. These were the 
values used for the screening constants a and 0 through­
out the present calculation. The interaction energy of 
the system was taken to be the difference between the 
energy computed with Eq. (2.12) and the energy of the 
isolated species as computed with the above wave 
functions and screening constants, i.e., (—1.13907) 
+ (—2.84766) double Ry. The hydrogen bond length 
was taken to be 1.406 a.u., the value at which Wang 
obtained the minimum. 

Using the preceding formalism and parameters, the 
helium-hydrogen molecule interaction energy was com­
puted, using an IBM 709 digital computer, for many 
configurations of the system's geometry. Since the 
length of the hydrogen bond is held constant throughout 

CftHe 

FIG. 1. Geometry of He-H2 system. *y U> \*c 

H</—A \ H 
q Cob b 

[a| a~]+lb\ b~\+2sah[a\ b^+laa\ bb^+lab] ab~] 1 
£ i = + — , (3.1a) 

(l+^a&2) Pab 

E2= 2[c\ c ] + [ > | cc]. (3.1b) 
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2.5 

5.5 

FIG. 2. Ln v0 and In v2 vs r. 

the calculation, it was found more convenient to denote 
the geometry of the system with the values of r and the 
angle y rather than with the distances pa&, pa c , and p&c. 
Here r is denned to be the distance from the helium 
nucleus to the middle of the H2 bond and y is the angle 
between r and the axis of the H2 molecule (Fig. 1). All 
one-electron, two-electron, and overlap integrals, Eqs. 
(2.13), (2.14), and (2.15), were computed exactly using 
existing digital computer subprograms. These subpro­
grams are based upon the zeta-function method of 
molecular integral evaluation developed by Barnett and 
Coulson.8 All such subprograms used were checked by 
computing several known integrals; the subprograms 
should give values which are accurate to the fifth place 
to the right of the decimal. I t required approximately 
six minutes on the IBM 709 computer to compute the 
energy of the He-H2 system for a given geometry of the 

TABLE I. Calculated He-H2 interaction energy. Energy given in 
milli-double Ry. H2 bond =1.406 a.u. 

r 
(a.u.) 0° 15° 30° 

7 
45° 60° 75° 90° 

3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 

10.546 10.190 9.274 8.136 7.130 6.470 6.241 
7.110 
4.777 
3.199 
2.135 
1.420 
0.941 
0.622 

6.870 
4.616 
3.092 
2.064 
1.372 
0.910 
0.601 

6.252 
4.200 
2.814 
1.879 
1.251 
0.830 
0.550 

5.480 
3.678 
2.461 
1.640 
1.090 
0.722 
0.476 

4.796 
3.216 
2.133 
1.417 
0.936 
0.615 
0.401 

4.351 
2.918 
1.952 
1.301 
0.863 
0.568 
0.369 

4.197 
2.816 
1.886 
1.262 
0.842 
0.558 
0.364 

8 M . P. Barnett and C. A. Coulson, Phil. Trans. Roy. Soc. 
A243, 221 (1951), 

three nuclei. Most of this time was spent computing 
two-center exchange integrals (type [ij\ij~J), three-
center exchange integrals (type [ij\ik~]) and three-
center Coulomb integrals (type \ji\jkj)> 

IV. NUMERICAL RESULTS 

The interaction energy V(r,y) as computed for the 
He—H2 system is tabulated in Table I. I t should be 
noted that due to the symmetry of the hydrogen 
molecule, V(r,y)= V(r, ir—y). We, therefore, list in 
Table I only values of y up to 90°. While the results in 
Table I are given to three decimal places, the third is 

TABLE II. v0 and v2 vs r. Energy in milli-double Ry. 
H2 bond =1.406 a.u. 

r 
(a.u.) 

3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 

Calculated 
Vo 

7.676 
5.168 
3.470 
2.324 
1.553 
1.034 
0.685 
0.450 

V2 

2.870 
1.942 
1.308 
0.876 
0.582 
0.386 
0.256 
0.172 

ln^o 

2.038 
1.642 
1.244 
0.843 
0.440 
0.034 

-0.378 
-0.798 

lnfl2 

1.054 
0.664 
0.268 

-0.133 
-0.541 
-0.952 
-1.363 
-1.763 

Exponential fit 
V0 Z>2 

7.806 2.929 
5.204 1.953 
3.470 1.302 
2.313 0.868 
1.542 0.579 
1.028 0.386 
0.686 0.257 
0.457 0.172 

probably meaningless due to errors in computing the 
molecular integrals. 

For a given value of r, the interaction energy is a 
function only of 7, and we may try to fit this angular 
dependence with some simple analytic function. If we 
consider the function 

V (7) = v0+ V2P2 (COST) , (4.1) 

where v0 and v2 are constants and P2(x) is a Legendre 
polynomial, we can pick VQ and v2 so that the calculated 

TABLE III. Vo(r)-\-V2(r)P2(cosy) fit to interaction energy. 
Energy in milli-double Ry. H2 bond = 1.406 a.u. 

r 
(a.u.) 0° 15° 30° 

7 
45° 60° 75° 90° 

3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 

10.546 10.258 9.470 8.394 7.318 6.530 6.241 
7.110 6.915 6.382 5.654 4.926 4.392 4.197 
4.777 
3.199 
2.135 
1.420 
0.941 
0.622 

4.646 
3.111 
2.077 
1.382 
0.916 
0.604 

4.287 
2.871 
1.917 
1.276 
0.845 
0.557 

3.797 
2.543 
1.699 
1.131 
0.749 
0.493 

3.306 
2.214 
1.480 
0.986 
0.653 
0.429 

2.948 
1.974 
1.320 
0.880 
0.583 
0.381 

2.816 
1.886 
1.262 
0.842 
0.558 
0.364 

interaction energy is represented exactly at two values 
of 7. If we choose v0 and v2 so that we get an exact fit at 
7 = 0 ° and 90°, we may then evaluate the function (4.1) 
at intermediate values of 7 and see how well it agrees 
with the computed values. The values thus calculated 
for VQ and v2 are listed in Table I I . Using these values of 
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vo and V2 we evaluate the function (4.1) and tabulate the 
results in Table I I I . By comparing Tables I and I I I , 
one can see that the function (4.1) represents the angu­
lar dependence of the calculated interaction energy 
quite well. 

After computing the values of ô and V2 for each value 
of r, we have essentially fitted the computed interaction 
energy with a function of the form 

V(r,y) = vQ(r)+V2(r)P2(co$y). (4.2) 

TABLE 

r 
(a.u.) 

IV. 

0 

Dumbbell model 
double Ry. H2 

15° 30° 

potential. Energy 
bond =1.406 a.u. 

7 
45° 60° 

given 

75° 

in milli-

90° 

3.8 16.830 15.874 13.465 10.606 8.177 6.635 6.115 
4.0 11.204 10.575 8.987 7.093 5.477 4.448 4.100 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 

7.459 
4.965 
3.306 
2.200 
1.465 
0.975 

7.045 
4.692 
3.125 
2.082 
1.386 
0.923 

5.996 
4.000 
2.668 
1.779 
1.186 
0.791 

4.742 
3.168 
2.116 
1.413 
0.943 
0.630 

3.667 
2.454 
1.641 
1.097 
0.733 
0.490 

2.980 
1.995 
1.335 
0.893 
0.597 
0.399 

2.748 
1.840 
1.232 
0.824 
0.551 
0.368 

We may now attempt to fit the values of v0 and V2 listed 
in Table I I with a simple function of r. What functional 
form we should try is made immediately apparent if we 
plot the logarithm of VQ and V2 versus ry as is done in 
Fig. 2. The result is two parallel lines, which means that 
we may write 

vQ(r) = Ca<rKr, (4.3a) 

v2(r) = C2e-*r. (4.3b) 

The correct values for the constants are 

C0= 17 283, C2= 6485 m-double Ry, 

«= 2.027 (a.u.)"1. (4.3c) 

TABLE V. Calculated He-H2 interaction energy. Energy given in 
milli-double Ry. H2 bond =1.486 a.u. 

r 
(a.u.) 

3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 

0° 

11.452 
7.737 
5.210 
3.496 
2.338 
1.558 
1.033 
0.683 

15° 

11.021 
7.446 
5.013 
3.364 
2.249 
1.499 
0.995 
0.658 

30° 

9.919 
6.700 
4.511 
3.026 
2.024 
1.349 
0.896 
0.595 

T 
45° 

8.568 
5.782 
3.887 
2.605 
1.739 
1.157 
0.767 
0.506 

60° 

7.391 
4.981 
3.346 
2.240 
1.492 
0.989 
0.651 
0.424 

75° 

6.626 
4.464 
2.998 
2.008 
1.339 
0.888 
0.582 
0.375 

90° 

6.364 
4.289 
2.880 
1.933 
1.294 
0.862 
0.568 
0.367 

In Table I I we list the values of the functions (4.3a) and 
(4.3b) evaluated for the various values of r. The fit is 
seen to be quite good. From the preceding discussion, it 
is seen that the He-H2 interaction energy may be 
expressed quite accurately by the function 

V(r,y) = CQe-*r[l+dP2(cosy)'], 

6=0.375. (4.4) 

FIG. 3. Amdur-Malinauskas experimental potentials and the calcu­
lated vo(r) for the He-H2 interaction. 

In order to obtain some idea of the accuracy of our 
calculation, we compare our vo(r) with the spherically 
averaged He-H2 interaction potential obtained by 
Amdur and Malinauskas9 from gas diffusion experiments 
carried out below 350°K. They postulated several ana­
lytic forms for the potential and then determined the 
parameters in these potential functions so as to obtain 
the best fit to their data. In Eq. (4.5) we give the 
parameters for the modified Buckingham exp—6 po­
tential determined by Amdur and Malinauskas in this 
way; Eq. (4.6) expresses their result in the form of a 
simple exponential function. They also obtained parame­
ters for a Lennard-Jones 6-12 potential, form e£(rm/r)12 

— 2(rm / r ) 6 ] , and for an inverse power of r function, 
form D/r8, but these will not be given in the present 
work. 

V i ( r ) = — ^ \ ^ a ^ ^ - ( - ) \ r^rma^ (4.5a) 
/aLoL \ r / J 1 - 6 / a 

^ 1 ( 0 = ° ° , r<rn (4.5b) 

where a= 13.22, rm= 3.375 A = 6.378 a.u., €=14.76°K 
= 0.04678 m-double Ry, rm&^= point at which Eq. 

9 A. P. Malinauskas, thesis, Massachusetts Institute of Tech­
nology Chemistry Department, 1962 (unpublished). 
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TABLE VI. v0 and v2 vs r. Energy in milli-double Ry. 
H2 bond =1.486 a.u. 

r 
(a.u.) 

3.S 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 

Calculated 
Vo 

8.060 
5.438 
3.657 
2.454 
1.642 
1.094 
0.723 
0.473 

V2 

3.392 
2.298 
1.553 
1.042 
0.696 
0.464 
0.310 
0.211 

In z;0 

2.087 
1.693 
1.297 
0.898 
0.496 
0.090 

-0.324 
-0.749 

In V2 

1.221 
0.832 
0.440 
0.041 

-0.363 
-0.768 
-1.171 
-1.557 

Exponential fit 
Vo 

8.060 
5.393 
3.608 
2.414 
1.616 
1.081 
0.723 
0.484 

v2 

3.392 
2.280 
1.533 
1.031 
0.693 
0.466 
0.313 
0.211 

(4.5a) has its maximum value. 

V2(r) = Qe-^ (4.6) 

where Q= 1.104X108°K=3.499X105 m-double Ry, 
X=5.234 Arl= 2.770 (a.u.)-1. In Fig. 3 we plot our calcu­
lated Vo(r) along with the Amdur-Malinauskas experi­
mental potentials gives above. The agreement is better 
than one might expect from such a simple wave function 
as the one we used. 

V. DUMBBELL MODEL FOR THE POTENTIAL 

I t is interesting to see whether it is possible to find a 
function f(x) such that the calculated interaction po­
tential may be represented by 

V(r,y) = f(Pac)+f(pbc). (5.1) 

If it were possible to do this, then we could say that each 
hydrogen atom of the hydrogen molecule interacts more 
or less independently with the helium atom and that the 
hydrogen molecule interacts as if it were a dumbbell 
made up from two hydrogen atoms on the end of a rod. 
If the relation (5.1) does hold, we can easily find out 
from our calculated interaction energy what the func­
tion f(x) must be, for if y = 7r/2, pac=Pbc and 

f(pao) = hV(r,T/2). 

By considering the interaction energy listed in Table I 
for 7 = 90° as a function of pac, we find that f(x) should 
be given quite closely by the simple function 

f(x) = De-*% 
D =8064 m-double Ry, ^=2.0345 (a.u.)"1. (5.2) 

In Table IV we evaluate the dumbbell model expression 
(5.1) for various values of r and y using Eq. (5.2) for 
f(x). By comparing Tables I and IV, we see that the 
dumbbell model is not very good; it produces a potential 
which is much more aspherical than the true potential 
really is. The failure of the dumbbell model to account 
for the true dependence of the interaction energy upon y 

10 R. Brout, J. Chem. Phys. 22, 934 (1954). 
11K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion 

of Ultrasonic Waves (Academic Press Inc., New York, 1959), p. 303. 

causes us to look with great skepticism upon research 
which uses this assumption as a starting point.10,11 

VI. RESULTS FOR LENGTHENED H2 BOND 

The interaction energy was also computed as a func­
tion of r and y with the H2 bond length = 1.486 a.u., a 
little longer than the equilibrium distance. For this 
small change in bond length, the value 1.166 for a, the 
hydrogen 15 orbital screening constant, should still be 
quite good and this was the value used. The procedure 
was identical to that for the 1.406 bond length and the 
results are presented in Table V. These results were then 
fitted to the functional form of (4.1) and the values of VQ 
and z>2 thus obtained listed in Table VI. The fit thus 
obtained to the calculated interaction energy is given in 
Table VII. The final analytic form obtained for the 
interaction energy at this expanded H2 bond length is 
given by 

V'(r,y) = Co'e-*''Zl+d'Pi(cosy)l, (6.1) 

TABLE VII. vo(r)-j-V2(r)P2(cosy) fit to interaction energy. Energy 
in milli-double Ry. H2 bond =1.486 a.u. 

r y 
(a.u.) 0° 15° 30° 45° 60° 75° 90° 

~3£ 11.452 11.111 10.180 8.908 7.636 6.704 6.364 
4.0 7.737 7.506 6.875 6.013 5.151 4.520 4.289 
4.2 5.210 5.054 4.627 4.045 3.462 3.036 2.880 
4.4 3.496 3.391 3.105 2.714 2.324 2.038 1.933 
4.6 2.338 2.268 2.077 1.816 1.555 1.364 1.294 
4.8 1.558 1.511 1.384 1.210 1.036 0.908 0.862 
5.0 1.033 1.002 0.917 0.801 0.685 0.600 0.568 
5.2 0.683 0.662 0.604 0.525 0.446 0.388 0.367 

where H2 bond = 1.486 a.u., CV= 16 666 m-double Ry, 
K ' = 2.009 (a.u.)"1, d' = 0.425. The biggest change upon 
lengthening the bond is in the value of 8. This should 
have been expected since this parameter represents a 
measure of the asphericity of the molecule, and surely 
the molecule becomes less and less like a sphere as it is 
elongated. 

VII. CONCLUSION 

We have succeeded in calculating from first principles 
the interaction energy between a helium atom and a 
hydrogen molecule. Although a relatively simple wave 
function was used, no approximations had to be made 
for the molecular integrals encountered, and the inter­
action energy was obtained for many configurations of 
the three nuclei involved. The spherically averaged 
results agree quite well with an interaction energy de­
termined by gas-diffusion measurements. I t was 
found possible to represent the calculated interaction 
energy quite accurately with a function of the form 
CerKr[l-\-8P2(cosy)~]' I t was shown that it is impossible 
to represent the calculated interaction potential by a 
dumbbell-type potential, i.e., / (p a c )+/(p6c) where f(x) 
is some appropriate function. In the paper following, the 
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probability for rotational excitation upon collision be­
tween a helium atom and a hydrogen molecule is com­
puted using the calculated interaction energy. 
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I. INTRODUCTION 

WH E N a diatomic molecule collides with another 
particle, atom, or molecule, inelastic as well as 

elastic scattering may occur; the diatomic molecule 
may undergo changes in any of the quantum numbers 
describing the state of its internal coordinates. If ini­
tially the diatomic molecule is in its ground electronic, 
vibrational, and rotational state, and we confine our­
selves to incident kinetic energies measured in the 
center-of-mass coordinate system that are below the 
energy necessary to excite the molecule to its first 
excited vibrational state, then the only energetically 
possible inelastic process is change in rotational quan­
tum number. Under these conditions, fairly low-incident 
energies, and no other competing inelastic process, it is 
possible to compute the inelastic scattering cross section 
from a rigorous quantum mechanical formalism and 
only two approximations. The first approximation is to 
treat the problem in the Born-Oppenheimer or adia-
batic approximation where the net effect of the electrons 
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is to provide a potential energy function of r, the dis­
tance measured along a line from the incoming particle 
to the center of mass of the diatomic molecule, and y, 
the angle between this line and the line joining the two 
nuclei of the molecule. This approximation is surely 
justified for low-incident velocities where the electrons 
have plenty of time to readjust themselves as the col­
liding partners move towards their rendezvous. The 
second necessary approximation is to use the method of 
distorted waves1,2 to solve the coupled differential 
equations which result from the Schrodinger equation 
of the problem. For low-incident energies, it turns out 
that the distorted-wave approximation is quite good. 
The low-incident kinetic energies also make feasible the 
use of a partial wave analysis of the problem. While this 
is not an approximation, its use reduces the computa­
tions to solving ordinary differential equations, an easy 
task for a digital computer. 

In the present work, the general methods described 
above are used to calculate the inelastic cross section 
for rotational excitation of a hydrogen molecule from 
the j=0 to the j=2 state when it collides with either 

1 T. Wu and T. Ohmura, Quantum Theory of Scattering (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1962), p. 219. 

2 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions 
(Oxford University Press, New York, 1949), Chaps. VI and 
VIII. 
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The formalism developed by Arthurs and Dalgarno has been used in the distorted wave approximation to 
calculate the inelastic scattering cross section for rotational excitation from the j=0 to the j—2 rotational 
state in collisions between a helium atom and a hydrogen molecule or two hydrogen molecules. All necessary 
computations were done with a digital computer, thus, allowing the Arthurs-Dalgarno formalism to be 
applied with no added approximations. The interaction energy between He and H2 obtained in the preceding 
paper was used for the He-H2 calculation while the interaction energy given by Takayanagi was used for 
the H2-H2 problem. Values for the total inelastic cross sections are given as well as graphs for the He—H2 
differential scattering cross section. Incident kinetic energies up to only 0.25 eV in the center-of-mass system 
were considered; for these low energies, vibrational or electronic excitation is impossible so that change in 
rotational quantum number is the only inelastic process possible. The results obtained for the H2—H2 cross 
section do not agree with the rate of de-excitation from the j—2 rotational level in H2 gas as measured by 
dispersion experiments with ultrasonic waves. The disagreement may be due to an incorrect H2—H2 inter­
action potential or failure to consider all important de-excitation mechanisms. 


